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Abstract

The behavior of systems with hard real-time constraints can be specified in terms of Hierarchical
Multi-State (HMS) abstract machines, which are generalizations of finite-state automata. In
this paper, a two-step method is presented for verifying that safety properties are not violated by
an HMS specification of a system. In the first step, the safety verification question is recast as a
reachability problem in an extension of the HMS machine. In the second step, reachability is
determined by the use of correctness—-preserving and partial correctness—preserving transforma-
tions. The method is shown to be complete, and it is illustrated by verifying that a safety property

holds for a simple railroad-crossing system if all of its deadlines are met. = . __
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1. Introduction

Hierarchical Multi-State (HMS) machines are a type of automata that can be used for the
specification of complex real-time systems [Ga-88], as well as for the causal modeling of
physical systems [Ga-87]). Key features of HMS machines that provide a means for dealing
with complexity are (i) multiple active states, (ii) simuitaneous firing of multiple transitions,
(iii) hierarchies, (iv) object-carrying tokens, and (v) non-deterministic transitions that allow
the specification of entire classes of related systems. Another feature of HMS machines is a
special language for defining temporal constraints on transitions.

The goal of this paper is to present a method for verifying that a system, as specified by an
HMS machine, does not violate a set of “safety properties,” which are requirements that
define undesirable situations for the system. The method first represents the requirements
as new states in the HMS machine, thus converting a problem of logical satisfaction into a
problem of state unreachability. Next, transformations are applied to the HMS machine that
alter its structure, while maintaining critical aspects of its behavior. Verification is complete
when the machine has been transformed into one for which unreachability is obvious (e.g.,
no transitions leading into the given state). A preliminary and informal presentation of this
method appeared in [Ga-88], where it was used to prove that a protocol for a two~processor
mutual exclusion protocol is collision-free.

The method of requirement representation outlined above is analogous to the representation
of propositional logic “facts” in Petri Nets (e.g., [Re-85]). In an HMS machine, however,
temporal logic “safety properties” [La-77], including properties which mandate that hard
deadlines are met, can be represented. The use of correctness—-preserving transformations

* The work reported in this paper was supported in part by the Office of Naval Research under
Contract No. N00014-89-C-0022.
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is common in formal software development [Pa-83], and rewrite rules are a standard part of
the syntactic theories of deduction and computation [Hu-85]. Transformations on classical
finite~state automata are also common, going back at I=ast as far as the proof of the equiva-
lence of non-deterministic and deterministic automata [Ra-59]. The modular construction
of Petri nets through stepwise refinement has been widely explored (beginning with
[Va=79], and more recently in [Vo-89]). Non-transformational approaches to proving that
formal specifications meet safety requirements include the construction of “refinement
mappings” [Ab-88], the discharging of “variance and invariance proof obligations”
[Al-85], and the construction of “computation graphs” {Ja-88].

In Sections 2 of this paper, the structure and execution of HMS machines are defined for-
mally. In Section 3, the concept of transformations on HMS machines is introduced, along
with a specific set of transformations that are shown to be complete for verification pur-
poses. In Section 4, the method of representing safety properties as extended states of an
HMS machine is presented. A demonstration of the proof method for a simple railroad-
crossing system with hard deadlines is presented in Section 5 (this example was originally
used in [Ja-88]). The summary and conclusions appear in Section 6.

2. HMS Machines

As noted in the Introduction, multiple states may be “active” at any moment and many
transitions may “fire” simultaneously in an HMS machine. The states of an HMS machine
may be organized hierarchically, although hierarchies will not be considered in this paper
(see [Ga-88]). A transition can fire only if certain logical and temporal conditions are
satisfied. If its states correspond to the relevant facts about a system, and its transitions
correspond to the system dynamics, then the HMS machine constitutes a “specification” of
that system. Given such a specification, and assuming a model of time as a discrete, linear
and unbounded ordering, the “executions” of the HMS machine correspond to the possible
behaviors of the system.

4

There is actually a succession of increasingly pe .« -tul classes of HMS machines that can be
defined by varying the types of states in the ma. iine (e.g., by introducing “tokens” into
. them). In this paper, we will consider only the simplest of these classes. in which a state is
either marked or unmarked. Thus, the class of machines considered in this paper is a
variation of a subclass of the *“HMS-0" machines of [Ga-88], where informal operational
definitions were given. The more formal definitions of this paper are key ingredients for
proving the consistency and completeness of our transformational approach to verification.

2.1. Structure of HMS Machines

In this section, the definition of the structure of HMS machines is presented. The purpose of
the various components of an HMS machine will become clear when the execution of HMS
machines is described in Section 2.2.




Informally, an HMS machine is defined as a set of states (denoted by S), together with
deterministic and non-deterministic transitions among these states (denoted I'p and Iy,
respectively). The following three definitions introduce basic concepts.

Definition 1 (Time Expression): T is a “time expression” if 7 is either <ty, t2>, <ty, t2>!, or
[t1, t2], where t1 and tg are integers, with ty <t < 0. When ty = t2 = t, these three time
expressions may be written as t, t!, and t respectively.

Definition 2 (Control): cis a “control” over S if 7 is a time expression and (a) c is (s, T) or
(=s, 1), for some state s; or (b) ¢ is (id, 7) or (-id, 7), for some transition label id (see
Definition 3). Controls of type (a) are called “state-based controls,” and controls of type
(b) are called “transition-based” controls.

In practice, only state-based controls are necessary for system specification. The transi-
tion-based controls, which were not a part of HMS definitions in [Ga-88], greatly simplify
the ideas of transformational proofs in Section 3.

Definition 3 (Transition): v is a “transition” over S if 7y is of the form
id: (PRIMARIES) (CONTROLS) --> (CONSEQUENTS)

where id is a “label,” PRIMARIES is a (possibly empty) subset of S, CONTROLS is a (possi-
bly empty) set of controls over S, and CONSEQUENTS is a (possibly empty) subset of S.
These three sets will be denoted PRIMS(y), CTRLS(y) and CNSQS(y), respectively.

Definition 4 (HMS Machine): An “HMS machine” is a triple H = (S, I'p, I'n), where Sis a
set of states, and I'p and I'y are (possibly empty) sets of transitions over S. H is “state-con-
trolled” if its transitions use only state-based controls.

State-controlled HMS machines are equivalent to HMS-0 machines of [Ga-88] without
hierarchies, special states (“initial,” “final,” and “external”), or “future delays.”

These definitions can be illustrated by the state-controlled HMS machine of Figure 1, which
defines the operation of a user-controlled mixer, where

S ={Switch-ON, Switch-OFF, MIXING, IDLE}
I'p ={w: MIXING) ((-Switch-ON, -1) (MIXING, [-10. 0])) --> (IDLE),
x: (IDLE) ((Switch-ON, -1) (MIXING, <-30, 0>)) --> (MIXING)}
I'n={y: (Switch-ON) () --> (Switch-OFF),
z: (Switch~-OFF) () --> (Switch-ON)}.

In the graphic notation of Figure 1, (1) states are represented as boxes (2) transitions are
represented as dark arrows from primaries to consequents, and (3) controls are denoted by
thin arrows. Non-determinism is indicated by an asterisk at the head of a transition arrow,
time expressions appear next to the symbol (O, and negation is denoted by the standard
symbol used in VLSI design. Transition labels such as w, x, y and z are normally not shown
in the graphic representation of HMS machines.




[-10, 0] :
<-30, 0>é_

MIXING

SWITCH
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Figure 1. Mixer HMS Machine

2.2. Execution of HMS Machines

The legal execution of HMS machines is described in this section. Informally, a machine
executes by “firing” some of its transitions at each moment, which alters the values of some
or all of the primary states and consequent states at the next moment. Starting from a
description of initial conditions, an execution of an HMS machine is determined by a se-
quence of sets of transitions, indicating what happens at each successive moment. Due to
the non-deterministic transitions, there may be a large set of possible executions for a given
machine under given initial conditions. As noted in {Ga-88], non-determinism is a power-
ful tool for defining a “generic” specification for an entire class of systems that can be
refined using methods outlined therein.

We begin with the notion of “marking,” which defines the status of an HMS machine at the
present and at all moments in the infinite past. The assumption of an infinite past will
simplify later definitions, although only finite histories are needed in practice.

Definition § (Marking): M is a “marking” of an HMS machine H = (S, I'p, I'n) if M is a
mapping from (SuTlp uI'n) x {0, -1, -2, ...} to {T, F}. If M(s, i) = T (F), then the state s is
said to be “marked” (“unmarked”) or “true” (“false”) at time i. If M(y, i) = T (F), then the
transition y is said to have “fired” (“not fired”) at time i.

An HMS machine is “executable,” in the sense that a sequence of successive markings may
be generated from an initial marking. At any moment of time, some transitions of an HMS
machine will be “enabled.” The firing of all enabled deterministic transitions and a subset
(possibly empty) of enabled non-deterministic transitions at that moment yields a new
marking at the next moment. This process is formalized by Definitions 6-10:

Definition 6 {Control Satisfaction): The control ¢ is “satisfied” for marking M if

(i) cis (x, <tq, tz>) and M(x, t3) = T for some t3 s.t. ty < t3 < to.

(i) cis (x, [ty, t2]) and M(x, t3) = T for every t3 s.t. t1 < t3 < to.

(iii) cis (x, <ty, t2>!), M(x, t3) = T for some t3 s.t. t1 <t3 < tp, and M(x, t1 - 1) = F.




(iv) cis (-x, <ty, tp>) and M(X, t3) = F for some t3 s.t. t1 < t3 < t2.
(v) cis (-x, [t1, t2]) and M(x, t3) = F for every t3 s.t. ty < t3 < to.
(vi) cis (-x, <tq, t2>)), M(x, t3) = F for some t3 s.t. t1 <t3 <tz, and M(x, t1 - 1) =T.

The different time expressions have informal names that are consistent with the definition
of control satisfaction: <ty, to>is called a “sometime-delay,” [ty, t3] is called an “always-
delay,” and <ty, t2>! is calied a “sometime-change-delay.”

Definition 7 (Transition Enablement): The transition 'y is “enabled” for marking M if (1)
M(s, 0) = T for all s in PRIMS(y), and (2) c is satisfied for M for all ¢ in CTRLS(Yy).

For example, in the HMS machine MIXER from Section 2.1, the transition from IDLE to
MIXING is enabled if (a) IDLE is currently true, (b) SWITCH-ON was true at the previous
moment, and (¢) MIXING was true within the past thirty moments (this constraint would be
consistent with a model of a cement mixer, for which mixing would become impossible after
a long period of idling).

For convenience, we define the following sets for H = (S, I'p, I'n), and marking M:

D-ENAB(H, M) = {y | v € ['b and 'y enabled for M}
N-ENAB(H, M) = {y | y € I'yand vy enabled for Mj}.

Definition 8 (Firing Set): The set of transitions I' is a “firing set” of H = (S, I'p, I'n) for
marking M if I' = D-ENAB(H, M) u I, where I’ € N-ENAB(H, M).

Definition 9 (Next Marking): If M is a marking of an HMS machine H, and if T is a firing set
of H for M, then the marking “after M via I'” is denoted by M[I'], and is given by

MIT](s, 0) = T for every state s in CNSQS(I')

MIT|(s, 0) = F for every state s in PRIMS(I') but not CNSQS(I')

M(T](s, 0) = M(s, 0) for every state s not in either PRIMS(I') or CNSQS(I')
M[T](y, 0) = T for every transition y € I

M(T](y, 0) = F for every transition y ¢ I’

M[T](x, t) = M(x, t + 1) for every x € S u I'p u I'n, and every time t < 0.

Definition 10 (HMS Execution): If H is an HMS machine, and if Mg is a marking of H, then
an “execution of H from Mg” is a sequence [Mg, M1, M, ...] of markings such that M;,; =
M;[T'/] for some firing set I"!of H for M, for each i > 0. The set of all executions of H from
My is denoted by &(H, Mp).

For example, one possible marking M of the HMS machine MIXER from Section 2.1 is

M(Switch-OFF, i) = M(IDLE, i) = T for all i < 0.
M(Switch-ON, i) = M(MIXING, i) = F for all i < 0.
M(w, i) = M(x, i) = M(y, 1) = M(z, i) = F for all i < 0.

The marking after M via firing set { z: (Switch-OFF) ( ) --> (Switch-ON) } is given by




M[T}(Switch-ON, 0) = T; M[I}(Switch-ON, i) = F for all i < 0
M[I](Switch-OFF, 0) = F; M[I'](Switch-OFF, i) = T for all i < 0

M(T](IDLE, i) = T for all i < 0; M(MIXING, i) = F foralli <0

M(z, 0) = T; M(z, i) = F for all i < 0; M(w, i) = M(x, i) = M(y, i) = F for all i < 0.

3. Transformations on HMS Machines

In this section, we define local transformations on HMS machines that modify the structure
of a machine while maintaining significant aspects of its behavior. The repeated application
of such transformations can lead to a machine with a very simple structure, for which the
determination of a desired condition is trivial.

In Section 3.1, both “correctness~preserving” and “partial-correctness-preserving” trans-
formations are defined. In Section 3.2, the consistency and completeness of these transfor-
mations is demonstrated. The completeness proof is constructive, although for practical
examples a more judicious choice of transformations is needed to make the process man-
ageable. The application of our method will be illustrated in Section S by verifying a safety
condition for a railroad-crossing system:.

3.1. Definition of Transformations

Before formalizing the notion of correctness-preserving transformation, we introduce four
preliminary definitions. Definition 11 describes the shifting of time expressions forward or
backward in time. Every control, except a sometime-change control. has a complement,
which is given in Definition 12. The 1-invariants of Definition 13, which describe an un-
changing property of the markings of a subset of states, are analogous to S-invariants from
Petri Net Theory {Re-85]. Finally, Definition 14 introduces the notion of marking consis-
tency, which indicates the plausibility of the past history of an HMS machine.

Definition 11 (Time Expression Shift): The “shift of time expression 7 by d” is denoted
shift(r, d), and is given by (a) shift(<ty, t2>, d) =<ty +d, t2 + d>, (b) shift([ty, t2], d) = [t + d,
to + d}, and (c) shift(<ty, to>!, d) = <tq + d, t2 + d>!.

Definition 12 (Control Complement): If ¢ is a sometime-control or always-control, then the
“complement of ¢” is denoted comp(c), and is given by (a) comp((x, <t1, t2>)) = (=X, [t1,
t2]), (b) comp((-x, <t1, t2>)) = (x, [t1, t2]), (c) comp((x, [t1, t2])) = (=x, <t1, t2>), and (d)
comp((-x, [t1, t2])) = (x, <ty, t2>). It follows from the definition of control satisfaction that
every marking satisfies exactly one of ¢ and comp(c).

Definition 13 (1-Invariance): Let H = (S, I'p, I'n). Then S’ € S is a “1-invariant subset of
H" if. for every initial marking Mg and every M in every execution in 8(H, Mp),
I{s’ | s e S AMy(s’,0)=T}|=1=||{s"]|s"e€S AM(E.0) =T} =1.

Although this paper will not consider the general problem of 1-invariant discovery, we note
one simple type: when the transitions into and out of states in S’ form a cycle. Two 1-invari-
ants of this type will be needed in the proof of the example in Section 5.2.




Definition 14 (Consistent Marking): A marking M of an HMS machine H is “consistent to k

in the past” if there is a marking M* of H such that M is the (k+1)st marking in some
execution of H from M*. M is “consistent” if it is consistent to k in the past for all k > 0.

We now introduce four basic classes of correctness-preserving transformations: Delay
Change modifies the time expression of a control of a transition; Case Split divides a transi-
tion with respect to mutually exclusive facts; Control Addition augments a transition with
some logical consequence of its existing controls; Transition Deletion removes a transition
with contradictory controls. One member of each transformation class is presented in Fig-
ure 2; formal definitions of four or five members of each class follow.

<=1, 0> DELAY

CHANGE
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Figure 2. Examples of Correctness~Preserving Transformations




Delay Chan

(1) If transition y has control ¢ = (x, <ty, t2>), where ty < t2, split y into two transitions y1 and
y2 such that (a) y1 differs from y only in that c is replaced by ¢y = (x. <ty, t3>), (b) y2 differs
from <y only in that c is replaced by ¢z = (x, <t3+1, t2>), and (c) t1 <t3 < to.

(2) If transition vy has control ¢ = (x, [t1, t2]), where ty < t2, split c into two controls c1 = (x,
[t1, t3]) and c2 = (x, [t3+], t2]), where t; <t3 < to.

(3) If transition -y has control (-s, <ty, tg>) or (=s, [ty, t2]), and no transition has primary s,
then add the control (s, [~oo, t1]).

(4) If transition y has control (s, <ty, t2>) or (s, [t1, t2]), and no transition has consequent s,
then add the control (s, [-eo, t1]).

Case Split:
(1) Split transition y into two transitions y1 and y2 such that control ¢ is added to vy1, and

control comp(c) is added to y2

(2) If transition 'y has control ¢ = (s, <ty, t2>!), and if {y'1, ..., ¥’} is the set of all transitions
with consequent s, split y into 1, ..., Yo, Where y;is identical to y except that it has the two
additional controls (¥’;,<t1, t2>) and (ss, t1 - 1).

(3) If transition y has control ¢ = (-s, <ty, ta>!), and if {y’1, .... ¥',} is the set of all transitions
with primary s, split y into yq, ... Y, Where v; is identical to vy, except that it has the two
additional controls (¥';,<t1, t2>) and (s, t1 - 1).

(4) If transition <y has control (y’, <ty, tp>), sis a primary of y’, and {y'1, .... ¥',} is the set of
all transitions with consequent s, then split y into yg, v1, ... Yn, Where (=s, <ty, t2>) is added to
vo, and (y'j,<ty, t2>) is added to y; for 1 <i < n.

Control Addition:
(1) If transition y has control (y’, T), then add to v
(a) (z, shift(1’, t-1)), if (x, 7) is a control of ¥y and T = t.
(b) (p, shift(r, -1)), if p is a primary of y’.
(©) (x, <ty +t1 -1, t'2 + t2 = 1>), if (x, <t’y, t'2>) € CTRLS(Y'), T = <ty, t2>.
(d) (x, <t’"1 +t1 =1, U2 + tg = 150, if (x, <t’q, U'2>!) € CTRLS(Y'), 7 = <ty, to>

(2) If transition <y has control (y’, <ty, t2>), and if s is a consequent of ¥’, then add control (s,
<ty, 2>) to .

(3) If transition vy has controls (s, 7) and (=s, 7’), then 46 transformations similar to the
following two cases can be defined:
(a) if T = [ty, t2], 7" = [ty’, t2’], and t2 < ty’, then add control (-s, <to+1, ty’>!)
(b) if T = [ty, t2], T = <ty’, t2’>, and t2 < ty’, then add control (-s, <tz+1, t2’>!).

(4) Add any control that reflects a 1-invariant (Definition 13), e.g., if transition y has con-
trol (s, 7), and {s, s’} is a 1-invariant, then control (-s’, T) can be added.

-8~
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(5) If (p, d) e CTRLS(y) for every p € PRIMS(y’), and (x, shift(r, d)) € CTRLS(y) for every
(x, 7) € CTRLS(~") for some deterministic Y and d < 0, then add (y’, d+1) to .

Transition D-zietion: Remove transition v, if

(1) v has conflicting controls (e.g., (s, [t1, t2]) and (ss, <t1’, 12’>), t1 < t1' < t2’ < 12).
(2) vy has control (s, <tq, t2>!) but no transition has s as a consequent.

(3) y has control (-s, <ty, t2>!), but no transition has s as a primary.

(4) vy has controls that conflict with some 1-invariant (Definition 13).

(5) Some v', of same type. with same PRIMS and CNSQS, is enabled whenever v is.

Note that Transition Deletion #1 and Control Addition #3 are special cases of a class of
rewrites for transitions with controls with the same state (e.g., {(s, [t1, t2]), (s, [t3, t4])} =
{(s, [t1. ta])} when t1 < t3 <t <tg)). There are 108 cases in this class. all of which are
straightforward consequences of the definition of control satisfaction (Definition 6).

This list of correctness—preserving transformations is by no means exhaustive. However,
the eighteen transformations will be proven to be both consistent and complete in Section
3.2. making them an adequate tool for answering the type of requirement satisfaction prob-
lems that will be introduced in Section 4.

There are transformations which are useful in constructing proofs, even though they do not
preserve all possible executions of an HMS machine under all possible initial markings.
One such “partial-correctness~preserving transformation,” called “Delay Sharpening,” is
illustrated in Figure 3, and is formally defined as follows:

Delay Sharpening: If transition 'y has primaries p1, ..., pn and controls cq, ..., ¢, then obtain
Y1, «oov Yo Y1» ---» ¥Y'm from y by adding the following controls to copies of v:

(a) the control (p;, 0') is added to v;

(b) the control (x, t!) is added to v’;if ¢; is (x, t).

(c) the control (x, t3') is added to v';if ¢; is (X, <tq, t2>)

(d) the controls (x, t4!) and (x, [t1+1, t2]) are added to v';if c; is (X, [t1, t2])

C SHARPENING

Figure 3. Partial-Correctness~Preserving Transformation

3.2. Consistency and Compieteness of Transformations

The proof that the eighteen correctness-preserving transformations cannot affect the possi-
ble executions of an HMS machine relies on the following Lemma. To state the lemma, the




definition of the restriction of a marking or an execution is needed:
Definition 15 (Restriction): LetH= (S, I'p, I'n), let W S ulpulx, and let E = (Mg, My,
...] be an execution in 8(H, Mg). Then the following “restrictions™ can be defined:

MotV is the marking function Mg restricted to ¥ x {0, -1. -2, ...}

EtW¥ is the sequence [Mot¥, MqytV¥, ...}

8(H, Mp)tV¥ is the set {E1¥ | E e &(H, Mp)}
Lemma 1 (Equivalent Execution): LetH= (S, I'p,'y) andH = (S, I'p, '), and let M and
M’ be markings of H and H’ such that MtS = M’1S. Suppose that, for any enabled transition
v from either machine and of either type (deterministic or non-deterministic), there is an
enabled transition vy’ of the same type in the other machine, such that PRIMS(y) = PRIMS(y’)
and CNSQS(y) = CNSQS(Y’). Then s(H, M)tS = ¢(H’, M")1S.

Proof (sketch): Suppose thatI' = D-ENAB(H, M) u I'y is a firing set of H w.r.t. M, where I';
< N-ENAB(H, M). By the conditions of the Lemma, there is a firing set [’ = D-ENAB(H’,
M) u Iy suci. that PRIMS(I") = PRIMS(I”") and CNSQS(T') = CNSQS(I'"). From Definition
9, then, we have that M[I'|1S = M'[I"’]1S, and thus 8(H, M)1S C &(H’, M’)1S. The proof of
the other direction is identical. (]

Using the Equivalent Execution Lemma, the following theorem demonstrates the consis-
tency of the correctness—preserving transformations, in the sense that the range of behavior
of any transformed HMS machine is identical to that of the original HMS machine.

Theorem 1 (Transformation Consistency): Let H = (S, I'p, I'n), and let H’ be derived from H
by one application of a Delay Change, Case Split, Control Addition or Transition Deletion
transformation from Section 3.1. Let M and M’ be markings of H and H' such that M1S =
M’1tS. Then s(H, M)1S = e(H’, M’")1S.

Proof (sketch): The proof will be given for one case; the other seventeen cases are similar.

Lety be a transition in H with control ¢ = (s, <t1, t2>), t1 < t2, and let H' be derived from H by
a Delay Change #1 applied toy. Then H' is identical to H, except that vy is replaced by 1
and y2, where y1 has c replaced by (s, <t1, t3>), and y2 has ¢ replaced by (s, <t3+1, t2>), t1 <
t3 < t2. Let M and M’ be markings of H and H’ such that MtS = M’1S.

Then. M satisfies control ¢ = (s, <ty, 12>) =
M(s, t') =T for some t’ sit. t1 <t' <17 =
M(s, t') =T for some t’ s.t. t1 <t <tgor M(s, t') =T for some t’ s.t. t3<t' <17 =
M'(s,t') =T forsome ' s.t. t1 <t <tgor M'(s, t') =T forsomet' st. t3<t' <t =
M’ satisfies control ¢y = (s, <ty, t3>) or M’ satisfies control co = (s, <t3+1, t2>)

But then (M satisfies y) = (M’ satisfies vy or M’ satisfies 'yp). Since vy, y1 and y2 have the
same primaries and consequents, and are all of the same type, Lemma 1 implies that g(H.
M)tS = g(H', M")1S. O
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The next theorem demonstrates that nine of the eighteen transformations are sufficient to
demonstrate unreachability in any HMS machine of the type defined in Section 2:

Theorem 2 (Transformation Completeness): If transition <y is not enabled in any consistent
marking of HMS machine H, then y can be deleted by performing a finite sequence of Case
Split #1-4, Control Addition #1, 2, 3 and 5, and Transition Deletion #1 transformations.

Proof (sketch): Let -d be the smallest number appearing in any time expression of any

transition in H. By a succession of Case Splits #1, all possible executions from 2 !S/(d+1)mgo.
ments ago to the present moment can be represented as new controls. Then, by a combina-
tion of Control Additions #2 and #3, Case Splits #1, #2, #3 and #4, and Transition Deletions

#1, all possible markings consistent with the executions from 2 !S!(¢*)moments ago to the
present moment can be represented. Also, by a combination of Control Additions #1 and
#5. all necessary preconditions of those executions can be represented. For each resulting
transition y’, there are two possibilities: a contradiction exists between two controls, or no
contradiction exists. In the first case, a Transition Deletion #1 removes ¥'. In the second
case, a consistent marking M* can be constructed which enablesy. The key to this construc-

tion is the Pigeonhole Principle, which guarantees that, in a marking of length 2 [S/(d+D 41

there must be two moments i and j, with - 2181(¢*D< i < j <0, such that the marking of all
states at i+k agrees with the marking of all states at j+k, for every -d <k < 0. Then, if M*
agrees with the possible marking represented ony’ fromito 0, and repeats the marking from
1to j back into the infinite past, it can be shown that M* is consistent and that it enables v,
which is a contradiction. (J

Although this proof is constructive, the number of steps it would require is prohibitive.
Stronger proofs probably exist that would give a smaller bound on the number of steps. In
practice, however, with proper selection and ordering of transformations, the complexity of
a verification is manageable. For example, the proof of the safety of the railroad-crossing
example in Section 5.2 requires 104 transformation steps, many of which fall into simple
and natural sequences of operations.

Not= that the completeness result does not apply to the problem of unreachability with
respect to properties of an initial marking. However, this case can be covered whenever the
initial cc. ".ons are representable as additional controls on .

Althou - ic Delay Sharpening transformation does not maintain complete behavioral
equivalence. i can preserve an important property of HMS machines -- “unreachability:”

Defin:tion 16 (Unreachability): If H = (S, I'p, I'n) is an HMS machine, and if Mg is a marking
of H. then a state s in S is “unreachable from Mp” if M(s, 0) = F for every marking M in
every executicn in 8(H, Mp).

The second transformation theorem gives the conditions under which a Delay Sharpening
transformation may be used to preserve unreachability in an HMS machine:




Theorem 3 (Partial-Correctness Transformation Consistency): Let H = (S, I'p, I"'N) be
derived from H = (S, I'p, ') by a single Delay Sharpening transtormation to a ransition .
Let M and M’ be markings of H and H’ respectively, such that M1S = M’1S. If the state s is
unreachable in H’ from M’, for some s € CNSQS(y), then s is unreachable in H from M.

Proof (sketch): If s is reachable in H from M without firing vy, then the same execution is
possible for H' from M’. Otherwise, if s is reachable in H from M, then 'y must be fired, and
thus y must be enabled, and thus 'y must be enabled for a first time. The execution of H
from M up to the first enablement of 'y can be duplicated in H' from M’, and at that moment
at least one of the new transitions must be enabled. (]

4. Representation of Requirements in HMS Machines

In this section, a method will be presented for representing system requirements as new
states in an HMS machine. In particular, this method can represent “safety properties,”
which say, informally, that “something bad never happens.” These requirements, which
include hard deadlines, can be associated with new states of an HMS machine, so that the
new states are unreachable if and only if the requirements are guaranteed to hold. It is
advantageous to have system requirements given in the same HMS machine as the system
specification, because it reduces a logical condition (satisfaction) to an execution condition
(reachability). As was shown in Section 3, correctness~preserving transformations can an-
swer questions of unreachability, and hence can be used to verify that a system specification
meets desired safety properties. Lastly, the NP-completeness of reachability for HMS ma-
chines is proven, suggesting the inherent intractability of safety verification.

Before defining the satisfaction of safety requirements on the states of an HMS machine, the
notion of a state literal needs to be defined:

Definition 17 (State Literal): A “state literal” is either a state or the negation of a state. The
marking M “satisfies” the literal [ (written M 1) if (a) | = sand M(s, 0) =T, or (b) | = =s and
M(s, 0) = F.

The next two definitions indicate. in two simple cases, when a safety requirement R is
satisfied by an execution E (written E = R). The temporal logic operator “{]J” stands for “at
the present moment, and at all future moments:”

Definition 18 (Simple Safety Property): Let E = [Mg, My, ...] be an execution of H, and let I,
..., I be literals of H. Then “0J (11 v .. v [)” is a “simple safety property of H,” and is
“satisfied” by execution E if, for every i > 0, there is an I, such that M; + .

Definition 19 (Simple Deadline Property): Let E = [Mg, My, ...] be an execution of H, let I,
l4, ..., Iy be literals of H, and let d > 0. Then “J(1 — ((I1 v .. v [,) before d))” is a “simple
deadline property of H,” and is “satisfied” by execution E if, whenever M; |- 1, there exists
ani’. i <1 < i+d, and there exists an I, such that M;  I.

Notice that simple safety properties and simple deadline properties are both “safety proper-
ties” in the common meaning of the term [La-77]. They are distinguished here because the
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representation within an HMS machine will be somewhat different, as will be seen in the
following two theorems that relate satisfaction to unreachability:

Theorem 4 (Simple Safety): Let H = (S, I'p, ') be an HMS machine, and let SAFE be a
simple safety property of H: [J(l1 v .. v l,). Then there is an HMS machine H’ = (S y {s*},
I'o u {v}, I'n) such that
(a) for every marking M’ of H', 8(H', M")1(SuTlpulN) =8(H, M't(SuTpuTn))
(b) for every marking M’ of H’ such that M'(s*, 0) = F,
s* unreachable from M’ = Et(S uTpuTI'n) - SAFE for all E e s(H’, M").

Proof (sketch): Add to H’ the new state s*, and the following deterministic transition y:
y: () ((ly, 0) ... (5 1y, 0)) ——> (s*) [where - I;=s; whenever |; = s; ].

Property (a) holds, since y has no primaries or consequents in S. Property (b) holds since s*
can become marked if and only if y can become enabled, and any execution leading to a
marking which first enables y will fail to satisfy SAFE. (O

Theorem 5 (Simple Deadline): Let H = (S, I'p, I'y) be an HMS machine, and let DLINE be a
simple deadline property of H: (O(1 — ((11 v .. v 1) before d)). Then there is an HMS
machine H’ = (S u {s*}, I'p v {y}, I'n) such that
(a) for every marking M’ of H’, e(H’, M')1(SuTpuTn) = eH, M't(SuTpuTn)
(b) for every marking M’ of H’ such that M'(s*, 0) = F,
s* unreachable from M’ = E$(S uTI'pu I'n) - DLINE for all E € s(H’, M").

Proof (sketch): Add to H' the new state s*, and the following deterministic transition y:
v () ((, =d), (4, [=d, O]) ... (= 1n, [-d, O])) ~—> (s*)
The demonstration that (a) and (b) hold for H’ follows the proof of Theorem 4. [J

Since the satisfaction of safety properties is reducible to HMS state unreachability, it is
worth noting that the HMS state reachability problem is NP-complete. The proof mimics a
proof in [De-88], which demonstrated the NP-completeness of certain planning problems.

Theorem 6 (NP-Complete): The HMS state reachability problem is NP-complete.

Proof (sketch): Reachability is in NP, since a legal firing sequence can be guessed and
checked efficiently. NP-hardness follows by reduction of the NP-complete problem 3SAT,
the satisfiability of conjuncts of disjuncts of triples of literals [Ga-79]. For any such logical
expression, an HMS machine can be constructed which (a) non-deterministically chooses a
valuation for all atoms in the first clock tick, and (b) deterministically evaluates the expres-
sion at that valuation over the next two clock ticks. The state corresponding to the truth of
the expression is reachable if and only if the original expression is satisfiable. [J

5. Railroad-Crossing Example

This section illustrates the application of the transformational approach of this paper for
verifying safety properties of real-time systems for the example of a railroad-crossing sys-
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tem adapted from [Ja-88]. Following our basic approach, the proof is in two parts: (1) In
Section 5.1, we represent the deadline-dependent safety property associated with the rail-
road-crossing system using new states in its HMS specification, following the method of
Section 4. (2) In Section 5.2, we demonstrate that the state corresponding to the key safety
property is unreachable, using the transformational method of Section 3.

It is important to emphasize that our approach, unlike the method used in {Ja-88] to verify
the same safety property is not a mechanical decision procedure. When the system under
consideration is complex, there may be no practical mechanical procedure, since the com-
plexity of most methods grows explosively with the size of the system. In contrast, a judi-
cious choice of transformations can, in a few steps, drastically prune a problem which would
otherwise be overwhelming. Note that the argument for heuristic proof methods is strength-
ened by the NP-completeness result of Section 4.

5.1. Requirement Representation for the Railroad-Crossing Example

A railroad-crossing system can be modeled as the interactions of a train and a gate. When
the train nears the crossing, a signal is sent to the gate that it should not be in the up position,
and when it leaves the crossing a signal is sent indicating that the gate can be up. This

system is specified by the HMS machine RR = (S, I'p, I'n), where

S = {BEFORE-CROSS, NEAR-CROSS, IN-CROSS, PAST-CROSS.
Gate_Up=T, Gate_Up=F, MOVE-UP, UP, MOVE-DOWN, DOWN}

I'p = {t;: (MOVE-UP) ((GateUp=F, 0)) -—-> (MOVE-DOWN)
tz: (DOWN) ((GateUp=T, 0)) --> (MOVE-UP)
t3: (UP) ((GateUp=F, 0)) -—> (MOVE-DOWN)}

I'n = {t4: (BEFORE-CROSS) ( ) -——> (NEAR-CROSS)
ts: (NEAR-CROSS) ((NEAR-CROSS, [-300, 0])) --> (IN-CROSS)
tg: (IN-CROSS) () —-> (PAST-CROSS)
t7: (PAST-CROSS) ((PAST-CROSS, [~100, 0])) —-> (BEFORE-CROSS)
tg: (GateUp=T) ((NEAR-CROSS, 0)) --> (Gate_Up=F)
tg: (GateUp=F) ((PAST-CROSS, 0)) -~> (Gate_Up=T)
t10: (MOVE-UP) ((GateUp=T, 0)) --> (UP)
t11: (MOVE-DOWN) () —=> (DOWN)}

The first four states of RR indicate where the train is at any moment: well before the
crossing, near the crossing, in the crossing, or past the crossing. The last four states indicate
where the gate is at any moment: on its way up, fully up, on its way down, or fully down.
The middle two states indicate the signal being sent to the gate: the gate should be up, or the
gate should not be up. We may use the following abbreviations for the states: {BC, NC, IC,
PC. GUT, GUF, MU, UP, MD, DN}.

This system has the following three deadline properties associated with it:
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Deadline 1: Transition from GUT to GUF within 50 moments of NC becoming marked.
Deadline 2: Transition from GUF to GUT within 50 moments of PC becoming marked.
Deadline 3: Transition from MD to DN within 50 moments of MD becoming marked.

As shown in Theorem S, these deadlines can be represented in RR by adding three new
states: Missed-Deadlinel, Missed-Deadline2, and Missed-Deadline3 (abbreviated MDL1,
MDL2, MDL3) together with the following three deterministic transitions:

t12: () (NEAR-CROSS, -50), (Gate_Up=T, [-50, 0])) --> (MISSED-DEADLINE1)
t13: () ((PAST-CROSS, -50), (Gate_Up=F, [-50, 0])) --> (MISSED-DEADLINE2)
t14: () (MOVE-DOWN, [-50, 0])) --> (MISSED-DEADLINE3)

Notice that a deadline is missed in the system if and only if the corresponding state in the
extended HMS machine becomes marked.

There is also an imporwant non-deadline safety requirement for the railroad-crossing sys-
tem: the crossing-arm must be down whenever the train is in the crossing:

O(-IN-CROSS v DOWN)

By Theorem 4, this simple safety property can be represented by adding the state UNSAFE-~
CROSS (abbreviated UC), together with the following deterministic transition:

tys: () ((|DOWN, 0), (IN-CROSS, 0)) --> (UNSAFE-CROSS)

Lastly. the key desirable system property is that the non-deadline safety requirement above
is guaranteed to hold if no deadlines are ever violated:

3(-UC v MDL1 v MDL2 v MDL3)

This simple safety property can now be represented by the new state SYSTEM-FAILURE
(abbreviated SF), together with the following deterministic transition:

t1g: () ((UC, 0), (-MDL1, 0) (-MDL2, 0), (-MDL3, 0)) --> (SYSTEM-FAILURE)

The extended HMS machine RR is shown graphically in Figure 4. Transitions with no
primaries are depicted as arrows from crossbars; requirement states are shaded in gray.

5.2. Transformational Proof of the Railroad-Crossing Example (sketch)

The HMS machine depicted in Figure 4 specifies the railroad-crossing system together with
timing constraints and important safety properties. If the state SYSTEM-FAILURE is
shown to be unreachable, then the corresponding safety property is guaranteed to be satis-
fied. In fact, the state can be proven to be unreachable, given the following assumptions
about the initial marking Mg: (1) exactly one of {IC, PC, BC, NC} is marked by Mp, (2)
exactly one of {GUT, GUF} is marked by Mg, (3) exactly one of {MU, UP, MD, DN} is
marked by Mg, and (4) My is consistent (Definition 14). The proof makes use of the fact
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that {GUT, GUF} and {IC, PC, BC, NC} are both 1-invariants of RR, which follows from the
cyclic structure of transitions into and out of those states.

IN
CROSS t6
s %] a0 *

NEAR [-300, 0]

{-100, 0]

BEFORE
CROSS
(BC)

ta

GateUp = F
(GUF)

Figure 4. Railroad Crossing with System Requirements

Figure 5 presents an outline of the main steps of the transformational proof. The nodes of
this tree show controls on significant transitions generated in the course of the proof, and the
values on the branches give the number of transformations from one node to the next. The
proof begins by applying a Delay Sharpening transformation to transition t1g:

() ((-MDL1, 0!) (-MDL2, 0) (-MDL3, 0) (UC, 0)) --> (SF)
() ((<-MDL1, 0) (~-MDL2, 0!) (~-MDL3, 0) (UC, 0)) --> (SF)
() ((-MDL1, 0) (-MDL2, 0) (-MDL3, 0!) (UC, 0)) --> (SF)
() ((-MDL1, 0) (-MDL2, 0) (-MDL3, 0) (UC, 0!)) =--> (SF)
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The first three transitions are then removed (using Transition Deletion #3), since no transi-
tion has a deadline state as a primary. Case Split #2 is applied to the fourth transition to add
controls (t1s, 0) and (-UC, -1), and Delay Change #3 pushes back the delays on some
controls. The transition now has the five controls at the node labeled A in Figure 5.

(UC, 0) (-MDL1, 0) (-MDL2, 0) (-MDL3, 0)

4)
A
(-UC, [-s0, ~1]) (SMDLI, [~co, 0]) (~MDL2, [~c0, 0]) (-MDL3, [~co, 0]) (t15, 0)

(2)

B C
add (-DN, -11) (IC, -1) add (-DN, -1) (IC, -1!)
|(5) (13)|
add (tz, -1) (DN -2) (GUT, -2) (IC, -2)  add (ts, -1) (NC, [-302, -2])
0 (-GUT, <-302, -252>) (-PC, [-302, -2])
add 237 2dd (GUF, <-302, -2525), (GUF, [-251, -1])

(GUT, -2") (IC, -2!) (DN, -2!) (1)

(7) (1) (7

violates subsumed by E F
1-invariance node D add add add add
(DN, -251) (MU, -251) (UP, -251) (MD, -251)
add add
(GUT, =3) (-GUT, -3) (4) D NE) (o)
(10)
9) violates contradictions or
ﬁ?gg?ﬁgﬁé%%@étions \ 1-invariance 1-mva;1%glges violations
after split 1-invariance violations (MD é) -200]) vs.

(GUT, [-303, -3]) vs. after split
(-GUT, <-303, -35>)  (PC, -2) vs. (-PC, -2)

Figure 5. Outline of Transformational Proof for Railroad-Crossing Safety Property

(-MD, <-249 ~2005>)

From node A, Control Addition #1 supplies controls required for tys to have fired, and Delay
Sharpening is applied to those new controls. At this point, the first main branching in the
proot occurs (nodes B and C in Figure 5).

The transition at node C is later split into four main cases (using successive Case Split #1°s),
one of which has the control (DN, -251) added to it (node E in Figure 5). From this point,
Control Addition #3 adds the control (-DN, <-250, -1>!), since (-DN, -1) is already present;
then Case Split #3 adds (t2, <-250, -1>), which is the only way DN can become false; then
Control Addition #1 adds (GUT, <~251, -2>), which is necessary for tz to fire; and then
Transition Deletion #4 eliminates this transition, because (GUT, <-251, -2>) is an invariant
conflict with the preexisting control (GUF, [-251, -1]).

There is much repetition in this proof. For example, the paths from node F and G in Figure
5 take 13 steps, but they agree on their final 11 steps (same transformations involving the
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same states and controls). Moreover, there are transformational “cliches” which recur, e.g.,
the three-step sequence (1) add sometime-change controls X, (2) add transition-based
controls Y to satisfy X, (3) add state-based controls Z to satisfy Y. Perhaps such cliches can
be replaced by single, high-level transformations.

A total of 104 transformations are applied in the course of this proof, generating a tree with
eight main leaves at depths ranging from 19 to 35. Each leaf represents a deleted transition,
and, at the end of the proof, no remaining transition has System-Failure as a consequent.
By Theorems 1 and 3, then, this state must be similarly unreachable in the original machine,
and thus the corresponding safety property holds, i.e., if all specified deadlines are met, the
train will never be in the crossing unless the gate is down.

6. Summary and Conclusions

A new formalization was presented for a simple class of HMS machines that are suitable for
specifying complex dynamic systems with timing constraints. It was shown how system
requirements can be represented within such an HMS machine, thus recasting a question of
logical satisfaction as a state reachability problem. A collection of consistent and complete
correctness—preserving transformations was given, by which an HMS machine structure can
be modified without altering important aspects of its behavior. The combination of require-
ment representation and structural transformation constitutes a proof method for verifying
that a system specification meets its safety requirements, including those involving hard
deadlines.

Possible extensions of this work include (1) discovery of more powerful (partial) correct-
ness-preserving transformations, (2) definition of new concepts of partial behavioral
equivalence, (3) consideration of other classes of HMS machines, and (4) creation of a
user-assisted automated system for applying transformations along the lines of an interac-
tive theorem prover (e.g., [Pa-87]).
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